TY - JOUR
T1 - Unsupervised Online Video Object Segmentation with Motion Property Understanding
AU - Zhuo, Tao
AU - Cheng, Zhiyong
AU - Zhang, Peng
AU - Wong, Yongkang
AU - Kankanhalli, Mohan
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2020
Y1 - 2020
N2 - Unsupervised video object segmentation aims to automatically segment moving objects over an unconstrained video without any user annotation. So far, only few unsupervised online methods have been reported in the literature, and their performance is still far from satisfactory because the complementary information from future frames cannot be processed under online setting. To solve this challenging problem, in this paper, we propose a novel unsupervised online video object segmentation (UOVOS) framework by construing the motion property to mean moving in concurrence with a generic object for segmented regions. By incorporating the salient motion detection and the object proposal, a pixel-wise fusion strategy is developed to effectively remove detection noises, such as dynamic background and stationary objects. Furthermore, by leveraging the obtained segmentation from immediately preceding frames, a forward propagation algorithm is employed to deal with unreliable motion detection and object proposals. Experimental results on several benchmark datasets demonstrate the efficacy of the proposed method. Compared to state-of-the-art unsupervised online segmentation algorithms, the proposed method achieves an absolute gain of 6.2%. Moreover, our method achieves better performance than the best unsupervised offline algorithm on the DAVIS-2016 benchmark dataset. Our code is available on the project website: Https://www.github.com/visiontao/uovos.
AB - Unsupervised video object segmentation aims to automatically segment moving objects over an unconstrained video without any user annotation. So far, only few unsupervised online methods have been reported in the literature, and their performance is still far from satisfactory because the complementary information from future frames cannot be processed under online setting. To solve this challenging problem, in this paper, we propose a novel unsupervised online video object segmentation (UOVOS) framework by construing the motion property to mean moving in concurrence with a generic object for segmented regions. By incorporating the salient motion detection and the object proposal, a pixel-wise fusion strategy is developed to effectively remove detection noises, such as dynamic background and stationary objects. Furthermore, by leveraging the obtained segmentation from immediately preceding frames, a forward propagation algorithm is employed to deal with unreliable motion detection and object proposals. Experimental results on several benchmark datasets demonstrate the efficacy of the proposed method. Compared to state-of-the-art unsupervised online segmentation algorithms, the proposed method achieves an absolute gain of 6.2%. Moreover, our method achieves better performance than the best unsupervised offline algorithm on the DAVIS-2016 benchmark dataset. Our code is available on the project website: Https://www.github.com/visiontao/uovos.
KW - object proposals
KW - salient motion
KW - Unsupervised video object segmentation
KW - video understanding
UR - http://www.scopus.com/inward/record.url?scp=85072509046&partnerID=8YFLogxK
U2 - 10.1109/TIP.2019.2930152
DO - 10.1109/TIP.2019.2930152
M3 - 文章
C2 - 31369377
AN - SCOPUS:85072509046
SN - 1057-7149
VL - 29
SP - 237
EP - 249
JO - IEEE Transactions on Image Processing
JF - IEEE Transactions on Image Processing
M1 - 8777290
ER -