Two-Click-Based Fast Small Object Annotation in Remote Sensing Images

Lu Lei, Zhenyu Fang, Jinchang Ren, Paolo Gamba, Jiangbin Zheng, Huimin Zhao

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

In the remote sensing field, detecting small objects is a pivotal task, yet achieving high performance in deep learning-based detectors heavily relies on extensive data annotation. The challenge intensifies as small objects in remote sensing imagery are typically densely distributed and numerous, leading to a substantial increase in the cost of creating large-scale annotated datasets. This elevated cost poses significant limitations on the application and advancement of small object detection. To address this issue, a point-based annotation (PBA) method is proposed, which generates bounding boxes (BBOXs) through graph-based segmentation. In this framework, user annotations categorize nodes into three distinct classes - positive, negative, and to-cut - facilitating a more intuitive and efficient annotation process. Utilizing the max-flow algorithm, our method seamlessly generates oriented BBOXs (OBBOXs) from these classified nodes. The efficacy of PBA is underscored by our empirical findings. Notably, annotation efficiency is enhanced by at least 40%, a significant leap forward. Moreover, the intersection over union (IoU) metric of our OBBOX outperforms existing methods like 'segment anything model (SAM)' by 10%. Finally, when applied in training, models annotated with PBA exhibit a 3% increase in the mean average precision (mAP) compared with those using traditional annotation methods. These results not only affirm the technical superiority of PBA but also its practical impact on advancing small object detection in remote sensing.

Original languageEnglish
Article number5639513
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume62
DOIs
StatePublished - 2024

Keywords

  • Cost-efficiency in data processing
  • data annotation
  • deep learning
  • remote sensing
  • small object detection

Fingerprint

Dive into the research topics of 'Two-Click-Based Fast Small Object Annotation in Remote Sensing Images'. Together they form a unique fingerprint.

Cite this