Abstract
Conventional solid propellants suffer from undesirable combustion performance due to the poor mass and heat transfer between metal fuels and oxidizers, as well as a lack of catalytic active sites between the catalyst and catalyzed objects. Embedding metal fuels and catalysts within the oxidizer has shown promise in improving the overall combustion performance of HTPB/AP/Al and HTPB/AP/RDX/Al composite solid propellants. However, the underlying mechanisms responsible for this enhancement remain to be further understood. In this study, we investigated the reactivities of core–shell Al@AP and Al@AP/CuO composites using thermal analysis and combustion diagnostic techniques. The results demonstrated that the decomposition of AP was promoted, as evidenced by a lower peak temperature (415.2–334.7 ℃), higher total heat release (116.4–720.8 J·g−1), a transition in the decomposition physical model from the random nucleation and 2D/3D growth of nuclei model to the auto-catalytic model, and increased generation of NO2. Furthermore, the Al@AP/CuO propellant pellet exhibited a more stable flame without agglomeration, and the condensed combustion products (CCPs) contained a lower amount of unreacted Al compared to that of conventional mixtures. These findings highlighted the potential of core–shell Al@AP and Al@AP/CuO composites as replacements for discrete ingredients of solid propellants, thereby offering improved performance for next-generation propulsion systems.
Original language | English |
---|---|
Article number | 129587 |
Journal | Fuel |
Volume | 356 |
DOIs | |
State | Published - 15 Jan 2024 |
Keywords
- Al@AP
- Combustion
- Core-shell composites
- CuO
- Solid propellants
- Thermal decomposition