Abstract
Let G be a graph with n vertices and L(G) its Laplacian matrix. Define ρG=[formula presented]L(G) to be the density matrix of G, where dG denotes the sum of degrees of all vertices of G. Let λ1,λ2,…,λn be the eigenvalues of ρG. The von Neumann entropy of G is defined as S(G)=−∑i=1nλilog2λi. In this paper, we establish a lower bound and an upper bound to the von Neumann entropy for random multipartite graphs.
Original language | English |
---|---|
Pages (from-to) | 201-206 |
Number of pages | 6 |
Journal | Discrete Applied Mathematics |
Volume | 232 |
DOIs | |
State | Published - 11 Dec 2017 |
Keywords
- Density matrix
- Random multipartite graphs
- von Neumann entropy