The von Neumann entropy of random multipartite graphs

Dan Hu, Xueliang Li, Xiaogang Liu, Shenggui Zhang

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Let G be a graph with n vertices and L(G) its Laplacian matrix. Define ρG=[formula presented]L(G) to be the density matrix of G, where dG denotes the sum of degrees of all vertices of G. Let λ12,…,λn be the eigenvalues of ρG. The von Neumann entropy of G is defined as S(G)=−∑i=1nλilog2λi. In this paper, we establish a lower bound and an upper bound to the von Neumann entropy for random multipartite graphs.

Original languageEnglish
Pages (from-to)201-206
Number of pages6
JournalDiscrete Applied Mathematics
Volume232
DOIs
StatePublished - 11 Dec 2017

Keywords

  • Density matrix
  • Random multipartite graphs
  • von Neumann entropy

Fingerprint

Dive into the research topics of 'The von Neumann entropy of random multipartite graphs'. Together they form a unique fingerprint.

Cite this