Abstract
The concomitant of relatively ductile-like shear banding and brittle-like fracture in metallic glasses makes their failure origin, i.e., how shear bands developing into cracks, a concerned issue to reveal the unique properties of the amorphous metals. Such shear-band-to-crack transition (SCT) is prominently influenced by loading rate and temperature, whereas their roles are usually ambiguous. In this paper, serial quasi-static and dynamic tests at ambient and cryogenic temperatures were performed to clarify the roles of strain rate and temperature during SCT in a Zr-based bulk metallic glass (BMG) by an electronic testing machine and a modified split Hopkinson pressure bar (SHPB) system, respectively. Strain rates were set from 10−3 s−1 to 103 s−1 and temperatures were set from 173 K to 293 K. In-situ and post-fracture SCT patterns have been captured by high-speed photographing and scan electronic microscopy (SEM), which show a strong relevance to shear-band decohesion. Comparisons between SCT patterns under various loading conditions have clarified that loading rate controls decohesion distribution while temperature controls decohesion resistance. A decohesion-tendency ratio of applied energy to critical decohesion resistance is established from an energy-based view, and rate and temperature dependence of the ratio is discussed to figure out how these two effects determining different decohesion behavior and subsequent SCT patterns in BMGs.
Original language | English |
---|---|
Article number | 108467 |
Journal | Intermetallics |
Volume | 175 |
DOIs | |
State | Published - Dec 2024 |
Keywords
- Decohesion
- Metallic glass
- Shear-band-to-crack transition (SCT)
- Strain rate
- Temperature