Tetrapod-like ZnO/ZnFe2O4 based heterostructure for enhanced ethanol detection

Hui Mei, Shixiang Zhou, Mingyang Lu, Laifei Cheng

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Tetrapod-like ZnO/ZnFe2O4 heterostructure composites were designed and fabricated for ethanol detection. Sensitivity and selectivity of ZnO were significantly enhanced after coating with ZnFe2O4, as it formed heterostructure and special morphology. The tetrapod-like structure formed numerous three-dimensional hollow holes as channels for the gas diffusion in the inner and outer surfaces of materials simultaneously, providing large specific areas as “reaction field” for gas adsorption. Additionally, the heterojunction increased oxygen adsorption, resulting in the formation of more chemisorbed oxygen species for reaction with the target gas. Further, in contrast to aggregated structures, the ZnO/ZnFe2O4 tetrapods were separated from each other, and the electrons conducting between the tetrapod-shape ZnO/ZnFe2O4 had to pass through the modified surface sensing layer at the boundary; thus, the response of the heterojunction to target gas significantly affected the overall resistance. Consequently, ZnO/ZnFe2O4 exhibited an excellent responses value of 28.11–500 ppm ethanol gas. The sensor exhibited good sensing repeatability and long-term stability, which maintained 93% of its original response after 30 days. The response time and selectivity to ethanol were also enhanced compared with the pristine T-ZnO. Therefore, the proposed strategy may facilitate the design and fabrication of binary transition metal oxide based heterostructure for ethanol vapor sensing.

Original languageEnglish
Article number155583
JournalJournal of Alloys and Compounds
Volume840
DOIs
StatePublished - 5 Nov 2020

Keywords

  • Gas sensor
  • Heterojunction
  • ZnFeO
  • ZnO

Fingerprint

Dive into the research topics of 'Tetrapod-like ZnO/ZnFe2O4 based heterostructure for enhanced ethanol detection'. Together they form a unique fingerprint.

Cite this