Abstract
AgI/g-C3N4 S-scheme heterojunction with a unique electron transfer pathway was developed as a catalyst for H2 evolution. We discussed the behavior of chemisorption and photoexcited charge carriers in photocatalytic reduction on the S-scheme AgI/g-C3N4 heterojunction. It was demonstrated that the path of charge transfer mediated by S-scheme AgI/g-C3N4 heterojunction was favorable for the improvement of electron utilization in photocatalysis. The advantage of S-scheme heterojunction was that the holes in the valence band (VB) of g-C3N4 could recombine with the electrons in the conduction band (CB) of AgI due to the built-in electric field. Electrons on the CB of g-C3N4 and holes on the VB of AgI were preserved for further photocatalytic reaction. Therefore, a distinctive electron transfer pathway was introduced in the S-scheme heterojunction. In addition, the lifetime of charge carriers was prolonged, and the reduced ability of electrons was increased as compared to reference g-C3N4. It not only decreased the energy required for electron excitation, but also reduced the energy consumption for the charge transfer. This paper provided a new strategy to improve the utilization of photogenerated electrons and chemisorption of water for photocatalytic H2O splitting.
Original language | English |
---|---|
Pages (from-to) | 269-280 |
Number of pages | 12 |
Journal | Journal of Colloid and Interface Science |
Volume | 631 |
DOIs | |
State | Published - Feb 2023 |
Keywords
- Built-in electric field
- g-CN
- H production
- S-scheme heterojunction