Study of the widely linear wiener filter for noise reduction

Jacob Benesty, Jingdong Chen, Yiteng Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

57 Scopus citations

Abstract

This paper develops a new widely linear noise-reduction Wiener filter based on the variance and pseudo-variance of the short-time Fourier transform coefficients of speech signals. We show that this new noise-reduction filter has many interesting properties, including but not limited to: 1) it causes less speech distortion as compared to the classical noise-reduction Wiener filter; 2) its minimum mean-squared error (MSE) is smaller than that of the classical Wiener filter; 3) it can increase the subband signal-to-noise ratio (SNR), while the classical Wiener filter has no effect on the subband SNR for any given signal frame and subband.

Original languageEnglish
Title of host publication2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages205-208
Number of pages4
ISBN (Print)9781424442966
DOIs
StatePublished - 2010
Externally publishedYes
Event2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 - Dallas, TX, United States
Duration: 14 Mar 201019 Mar 2010

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010
Country/TerritoryUnited States
CityDallas, TX
Period14/03/1019/03/10

Keywords

  • Circularity
  • Noise reduction
  • Noncircularity
  • Widely linear wiener filter
  • Wiener filter

Fingerprint

Dive into the research topics of 'Study of the widely linear wiener filter for noise reduction'. Together they form a unique fingerprint.

Cite this