Sparse representation of higher-order functional interaction patterns in task-based FMRI data

Shu Zhang, Xiang Li, Jinglei Lv, Xi Jiang, Dajiang Zhu, Hanbo Chen, Tuo Zhang, Lei Guo, Tianming Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

Traditional task-based fMRI activation detection methods, e.g., the widely used general linear model (GLM), assume that the brain's hemodynamic responses follow the block-based or event-related stimulus paradigm. Typically, these activation detections are performed voxel-wise independently, and then are usually followed by statistical corrections. Despite remarkable successes and wide adoption of these methods, it remains largely unknown how functional brain regions interact with each other within specific networks during task performance blocks and in the baseline. In this paper, we present a novel algorithmic pipeline to statistically infer and sparsely represent higher-order functional interaction patterns within the working memory network during task performance and in the baseline. Specifically, a collection of higher-order interactions are inferred via the greedy equivalence search (GES) algorithm for both task and baseline blocks. In the next stage, an effective online dictionary learning algorithm is utilized for sparse representation of the inferred higher-order interaction patterns. Application of this framework on a working memory task-based fMRI data reveals interesting and meaningful distributions of the learned sparse dictionary atoms in task and baseline blocks. In comparison with traditional voxel-wise activation detection and recent pair-wise functional connectivity analysis, our framework offers a new methodology for representation and exploration of higher-order functional activities in the brain.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention, MICCAI 2013 - 16th International Conference, Proceedings
Pages626-634
Number of pages9
EditionPART 3
DOIs
StatePublished - 2013
Event16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013 - Nagoya, Japan
Duration: 22 Sep 201326 Sep 2013

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 3
Volume8151 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013
Country/TerritoryJapan
CityNagoya
Period22/09/1326/09/13

Keywords

  • dictionary learning
  • GES
  • higherorder interaction
  • sparse coding
  • task-based fMRI

Fingerprint

Dive into the research topics of 'Sparse representation of higher-order functional interaction patterns in task-based FMRI data'. Together they form a unique fingerprint.

Cite this