TY - GEN
T1 - Robust Region Feature Synthesizer for Zero-Shot Object Detection
AU - Huang, Peiliang
AU - Han, Junwei
AU - Cheng, De
AU - Zhang, Dingwen
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Zero-shot object detection aims at incorporating class semantic vectors to realize the detection of (both seen and) unseen classes given an unconstrained test image. In this study, we reveal the core challenges in this research area: how to synthesize robust region features (for unseen objects) that are as intra-class diverse and inter-class separable as the real samples, so that strong unseen object detectors can be trained upon them. To address these challenges, we build a novel zero-shot object detection framework that contains an Intra-class Semantic Diverging component and an Inter-class Structure Preserving component. The former is used to realize the one-to-more mapping to obtain diverse visual features from each class semantic vector, preventing miss-classifying the real unseen objects as image backgrounds. While the latter is used to avoid the synthesized features too scattered to mix up the inter-class and foreground-background relationship. To demonstrate the effectiveness of the proposed approach, comprehensive experiments on PASCAL VOC, COCO, and DIOR datasets are conducted. Notably, our approach achieves the new state-of-the-art performance on PASCAL VOC and COCO and it is the first study to carry out zero-shot object detection in remote sensing imagery.
AB - Zero-shot object detection aims at incorporating class semantic vectors to realize the detection of (both seen and) unseen classes given an unconstrained test image. In this study, we reveal the core challenges in this research area: how to synthesize robust region features (for unseen objects) that are as intra-class diverse and inter-class separable as the real samples, so that strong unseen object detectors can be trained upon them. To address these challenges, we build a novel zero-shot object detection framework that contains an Intra-class Semantic Diverging component and an Inter-class Structure Preserving component. The former is used to realize the one-to-more mapping to obtain diverse visual features from each class semantic vector, preventing miss-classifying the real unseen objects as image backgrounds. While the latter is used to avoid the synthesized features too scattered to mix up the inter-class and foreground-background relationship. To demonstrate the effectiveness of the proposed approach, comprehensive experiments on PASCAL VOC, COCO, and DIOR datasets are conducted. Notably, our approach achieves the new state-of-the-art performance on PASCAL VOC and COCO and it is the first study to carry out zero-shot object detection in remote sensing imagery.
KW - categorization
KW - Recognition: detection
KW - retrieval
KW - Transfer/low-shot/long-tail learning
UR - http://www.scopus.com/inward/record.url?scp=85131023946&partnerID=8YFLogxK
U2 - 10.1109/CVPR52688.2022.00747
DO - 10.1109/CVPR52688.2022.00747
M3 - 会议稿件
AN - SCOPUS:85131023946
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 7612
EP - 7621
BT - Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PB - IEEE Computer Society
T2 - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Y2 - 19 June 2022 through 24 June 2022
ER -