TY - JOUR
T1 - Response to Oxidative Stress Induced by Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in Differentiated PC12 Cells
AU - Li, Cunzhi
AU - Lv, Xiaoqiang
AU - Liu, Zhiyong
AU - Deng, Hui
AU - Gao, Ting
AU - Li, Huan
AU - Peng, Xinying
AU - Qian, Airong
AU - Gao, Junhong
AU - Hu, Lifang
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/5
Y1 - 2025/5
N2 - Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is a globally recognized energetic material that widely used in industrial, mining, and military fields. Like hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and other nitramine compounds, HMX has also been reported to exhibit neurotoxicity. However, the molecular mechanisms underlying the toxic effects of HMX remain poorly understood. Therefore, this study aims to investigate the neurotoxicity induced by HMX by adopting PC12 cells. The results show that HMX treatment decreased cell viability and upregulated the intracellular free calcium ions (Ca2+) in PC12 cells. Furthermore, HMX caused aggravated oxidative stress in PC12 cells, as evidenced by the upregulations of reactive oxygen species (ROS) and malondialdehyde (MDA). Intracellular biochemical assays demonstrated that HMX induced loss of mitochondrial membrane potential in PC12 cells. Notably, altered expression of brain-derived neurotrophic factor (BDNF) and ionotropic glutamate receptors (iGluRs), as well as an abnormal transcription profile, were also observed in PC12 cells treated by HMX. These findings suggest that HMX exerts toxic effects on PC12 cells, involved in oxidative stress, and disturbances in Ca2+ and BDNF, accompanied by aberrant iGluRs. Overall, the present study helps us better understand the health hazards associated with HMX and provides valuable insights for developing the health protection standards related to HMX exposure.
AB - Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is a globally recognized energetic material that widely used in industrial, mining, and military fields. Like hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and other nitramine compounds, HMX has also been reported to exhibit neurotoxicity. However, the molecular mechanisms underlying the toxic effects of HMX remain poorly understood. Therefore, this study aims to investigate the neurotoxicity induced by HMX by adopting PC12 cells. The results show that HMX treatment decreased cell viability and upregulated the intracellular free calcium ions (Ca2+) in PC12 cells. Furthermore, HMX caused aggravated oxidative stress in PC12 cells, as evidenced by the upregulations of reactive oxygen species (ROS) and malondialdehyde (MDA). Intracellular biochemical assays demonstrated that HMX induced loss of mitochondrial membrane potential in PC12 cells. Notably, altered expression of brain-derived neurotrophic factor (BDNF) and ionotropic glutamate receptors (iGluRs), as well as an abnormal transcription profile, were also observed in PC12 cells treated by HMX. These findings suggest that HMX exerts toxic effects on PC12 cells, involved in oxidative stress, and disturbances in Ca2+ and BDNF, accompanied by aberrant iGluRs. Overall, the present study helps us better understand the health hazards associated with HMX and provides valuable insights for developing the health protection standards related to HMX exposure.
KW - free calcium ion
KW - HMX
KW - oxidative stress
KW - PC12 cells
KW - transcriptomics
UR - http://www.scopus.com/inward/record.url?scp=105006589347&partnerID=8YFLogxK
U2 - 10.3390/toxics13050347
DO - 10.3390/toxics13050347
M3 - 文章
AN - SCOPUS:105006589347
SN - 2305-6304
VL - 13
JO - Toxics
JF - Toxics
IS - 5
M1 - 347
ER -