TY - JOUR
T1 - Representation of A15 composition and T C in internal-Sn Nb 3Sn superconducting strands
AU - Zhang, Chaowu
AU - Zhou, Lian
AU - Sulpice, Andre
AU - Soubeyroux, Jean Louis
AU - Tang, Xiande
AU - Verwaerde, Christophe
AU - Hoang, Gia Ky
PY - 2010/11
Y1 - 2010/11
N2 - Four sets of mono-element (ME) and two kinds of multifilament (MF) internal-Sn Nb3Sn superconducting strands were designed and fabricated through RRP method in which different compoment ratios, various composite configurations and some third element alloying were arranged. All the strand samples underwent a 210°C/50 h + 340°C/25 h thermal duration for Cu-Sn alloying. After that A15 phase formation heat treatment (HT) was applied for which the ME samples were chosen at three reaction temperatures of 675°C, 700°C and 725°C for 100 h and 200 h while the MF samples at four temperatures of 650°C, 675°C, 700°C and 725°C for 128 h and 200 h. The heat-treated samples were examined for A15 phase composition distribution by X-ray EDS. SQUID magnetization measurement was used to determine critical temperature T C. The obtained results demonstrate that for fully-reacted internal-Sn Nb3Sn superconductors the A15 phase composition and the intrinsic property T C are determined by the diffusion and solid state reaction mechanism and are independent of the factors including HT temperature, strand composite component and configuration arrangement, and the third element addition within the experimental range.
AB - Four sets of mono-element (ME) and two kinds of multifilament (MF) internal-Sn Nb3Sn superconducting strands were designed and fabricated through RRP method in which different compoment ratios, various composite configurations and some third element alloying were arranged. All the strand samples underwent a 210°C/50 h + 340°C/25 h thermal duration for Cu-Sn alloying. After that A15 phase formation heat treatment (HT) was applied for which the ME samples were chosen at three reaction temperatures of 675°C, 700°C and 725°C for 100 h and 200 h while the MF samples at four temperatures of 650°C, 675°C, 700°C and 725°C for 128 h and 200 h. The heat-treated samples were examined for A15 phase composition distribution by X-ray EDS. SQUID magnetization measurement was used to determine critical temperature T C. The obtained results demonstrate that for fully-reacted internal-Sn Nb3Sn superconductors the A15 phase composition and the intrinsic property T C are determined by the diffusion and solid state reaction mechanism and are independent of the factors including HT temperature, strand composite component and configuration arrangement, and the third element addition within the experimental range.
KW - A15 phase composition
KW - composite configuration and design
KW - phase formation heat treatment
KW - third element alloying
UR - http://www.scopus.com/inward/record.url?scp=78049453048&partnerID=8YFLogxK
U2 - 10.1007/s11431-010-4088-z
DO - 10.1007/s11431-010-4088-z
M3 - 文章
AN - SCOPUS:78049453048
SN - 1674-7321
VL - 53
SP - 3020
EP - 3026
JO - Science China Technological Sciences
JF - Science China Technological Sciences
IS - 11
ER -