PRformer: Pyramidal recurrent transformer for multivariate time series forecasting

Yongbo Yu, Weizhong Yu, Feiping Nie, Zongcheng Miao, Ya Liu, Xuelong Li

Research output: Contribution to journalArticlepeer-review

Abstract

The self-attention mechanism in Transformer architecture, invariant to sequence order, necessitates positional embeddings to encode temporal order in time series prediction. We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences, particularly when employing longer lookback windows. To address this, we introduce an innovative approach that combines Pyramid RNN embeddings (PRE) for univariate time series with the Transformer's capability to model multivariate dependencies. PRE, utilizing pyramidal one-dimensional convolutional layers, constructs multiscale convolutional features that preserve temporal order. Additionally, RNNs, layered atop these features, learn multiscale time series representations sensitive to sequence order. This integration into Transformer models with attention mechanisms results in significant performance enhancements. We present the PRformer, a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets. This performance highlights the effectiveness of our approach in leveraging longer lookback windows and underscores the critical role of robust temporal representations in maximizing Transformer's potential for prediction tasks.

Original languageEnglish
Article number107769
JournalNeural Networks
Volume191
DOIs
StatePublished - Nov 2025

Keywords

  • Multiscale representation learning
  • Pyramidal recurrent transformer
  • Time series forecasting

Fingerprint

Dive into the research topics of 'PRformer: Pyramidal recurrent transformer for multivariate time series forecasting'. Together they form a unique fingerprint.

Cite this