@inproceedings{378405a97866459eb2fa1da3c74fbc2e,
title = "Numerical analysis of flow and thermal performance of a water-cooled wavy microchannel heat sink",
abstract = "With the increasing output power of the integrated circuit chips, the heat flux involved is being accordingly increased. In such situation, the air has almost reached its limit of cooling capacity, and thus the liquid cooling technology incorporating microchannel heat sinks is desired to cool the electronic chips in order to remove more heat loads. However these microchannel heat sinks are often designed to be straight with rectangular cross section. In this study, on the basis of a straight microchannel having rectangular cross section, a kind of wavy microchannel is designed and then the laminar flow and heat transfer are investigated numerically. It is shown that for removing the identical load, the wavy microchannel has great potential to reduce pressure drop compared to the straight microchannel, especially for higher wave amplitude at the same Reynolds number, indicating the overall thermal performance of the wavy microchannel is superior to the traditional straight rectangular microchannel. It is suggested such wavy microchannel can be used to cool chips effectively with much smaller pressure drop penalty.",
keywords = "Numerical simulation, Overall thermal resistance, Pressure drop, Wavy microchannel",
author = "Gongnan Xie and Jian Liu and Weihong Zhang and Bengt Sund{\'e}n",
year = "2012",
doi = "10.1115/IMECE2012-85920",
language = "英语",
isbn = "9780791845233",
series = "ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)",
publisher = "American Society of Mechanical Engineers (ASME)",
number = "PARTS A, B, C, D",
pages = "1411--1417",
booktitle = "Fluids and Heat Transfer",
edition = "PARTS A, B, C, D",
note = "ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012 ; Conference date: 09-11-2012 Through 15-11-2012",
}