Nonlinear response prediction of cracked rotor based on EMD

Yongfeng Yang, Xingmin Ren, Weiyang Qin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The empirical mode decomposition (EMD) method is introduced, to improve the prediction accuracy of cracked rotor's nonlinear response during a long-term period. The EMD method was applied to decompose the nonlinear response into a series of intrinsic mode functions (IMF). Consequently, the prediction results of IMF were obtained, based on the maximal local Lyapunov exponent (LLE). By adding all the prediction results of IMF, the nonlinear response of cracked rotor can be predicted, called IMF prediction method. Compared with the response predicted directly by the maximal local Lyapunov exponent, when the forecasting step is less than the maximal prediction time which is calculated by the multiplicative inverse of maximal Lyapunov exponent, the IMF method has the same prediction accuracy. When the forecasting step is greater than maximal prediction time, the IMF prediction method is more advantageous than the Lyapunov prediction method.

Original languageEnglish
Title of host publication54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
StatePublished - 2013
Event54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Boston, MA, United States
Duration: 8 Apr 201311 Apr 2013

Publication series

NameCollection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
ISSN (Print)0273-4508

Conference

Conference54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Country/TerritoryUnited States
CityBoston, MA
Period8/04/1311/04/13

Fingerprint

Dive into the research topics of 'Nonlinear response prediction of cracked rotor based on EMD'. Together they form a unique fingerprint.

Cite this