Noisy multiobjective black-box optimization using Bayesian optimization

Hongyan Wang, Hua Xu, Yuan Yuan, Junhui Deng, Xiaomin Sun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Expensive black-box problems are usually optimized by Bayesian Optimization (BO) since it can reduce evaluation costs via cheaper surrogates. The most popular model used in Bayesian Optimization is the Gaussian process (GP) whose posterior is based on a joint GP prior built by initial observations, so the posterior is also a Gaussian process. Observations are often not noise-free, so in most of these cases, a noisy transformation of the objective space is observed. Many single objective optimization algorithms have succeeded in extending efficient global optimization (EGO) to noisy circumstances, while ParEGO fails to consider noise. In order to deal with noisy expensive black-box problems, we extending ParEGO to noisy optimization according to adding a Gaussian noisy error while approximating the surrogate. We call it noisy-ParEGO and results of S-metric indicate that the algorithm works well on optimizing noisy expensive multiobjective black-box problems.

Original languageEnglish
Title of host publicationGECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion
PublisherAssociation for Computing Machinery, Inc
Pages239-240
Number of pages2
ISBN (Electronic)9781450367486
DOIs
StatePublished - 13 Jul 2019
Externally publishedYes
Event2019 Genetic and Evolutionary Computation Conference, GECCO 2019 - Prague, Czech Republic
Duration: 13 Jul 201917 Jul 2019

Publication series

NameGECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion

Conference

Conference2019 Genetic and Evolutionary Computation Conference, GECCO 2019
Country/TerritoryCzech Republic
CityPrague
Period13/07/1917/07/19

Keywords

  • Black-box optimization
  • Expensive multiobjective optimization
  • Gaussian noise
  • Gaussian Process
  • ParEGO

Fingerprint

Dive into the research topics of 'Noisy multiobjective black-box optimization using Bayesian optimization'. Together they form a unique fingerprint.

Cite this