NM-NET: Mining reliable neighbors for robust feature correspondences

Chen Zhao, Zhiguo Cao, Chi Li, Xin Li, Jiaqi Yang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

133 Scopus citations

Abstract

Feature correspondence selection is pivotal to many feature-matching based tasks in computer vision. Searching spatially k-nearest neighbors is a common strategy for extracting local information in many previous works. However, there is no guarantee that the spatially k-nearest neighbors of correspondences are consistent because the spatial distribution of false correspondences is often irregular. To address this issue, we present a compatibility-specific mining method to search for consistent neighbors. Moreover, in order to extract and aggregate more reliable features from neighbors, we propose a hierarchical network named NM-Net with a series of graph convolutions that is insensitive to the order of correspondences. Our experimental results have shown the proposed method achieves the state-of-the-art performance on four datasets with various inlier ratios and varying numbers of feature consistencies.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages215-224
Number of pages10
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Externally publishedYes
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Keywords

  • 3D from Multiview and Sensors
  • Representation Learning

Fingerprint

Dive into the research topics of 'NM-NET: Mining reliable neighbors for robust feature correspondences'. Together they form a unique fingerprint.

Cite this