Multiple Object Tracking Based on Occlusion-Aware Embedding Consistency Learning

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

The Joint Detection and Embedding (JDE) framework has achieved remarkable progress for multiple object tracking. Existing methods often employ extracted embeddings to re-establish associations between new detections and previously disrupted tracks. However, the reliability of embeddings diminishes when the region of the occluded object frequently contains adjacent objects or clutters, especially in scenarios with severe occlusion. To alleviate this problem, we propose a novel multiple object tracking method based on visual embedding consistency, mainly including: 1) Occlusion Prediction Module (OPM) and 2) Occlusion-Aware Association Module (OAAM). The OPM predicts occlusion information for each true detection, facilitating the selection of valid samples for consistency learning of the track's visual embedding. The OAAM leverages occlusion cues and visual embeddings to generate two separate embeddings for each track, guaranteeing consistency in both unoccluded and occluded detections. By integrating these two modules, our method is capable of addressing track interruptions caused by occlusion in online tracking scenarios. Extensive experimental results demonstrate that our approach achieves promising performance levels in both unoccluded and occluded tracking scenarios.

Original languageEnglish
Pages (from-to)9521-9525
Number of pages5
JournalICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Korea, Republic of
Duration: 14 Apr 202419 Apr 2024

Keywords

  • Joint Detection and Embedding
  • Multiple Object Tracking
  • Track-Detection Association
  • Visual Embedding Consistency

Fingerprint

Dive into the research topics of 'Multiple Object Tracking Based on Occlusion-Aware Embedding Consistency Learning'. Together they form a unique fingerprint.

Cite this