Multi-scale computational method for dynamic thermo-mechanical performance of heterogeneous shell structures with orthogonal periodic configurations

Hao Dong, Xiaojing Zheng, Junzhi Cui, Yufeng Nie, Zhiqiang Yang, Qiang Ma

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

This study presents a novel multi-scale computational method to analyze the dynamic thermo-mechanical performance of heterogeneous shell structures with orthogonal periodic configurations. The heterogeneities of heterogeneous shell structures are taken into account by periodic layouts of unit cells on the microscale in orthogonal curvilinear coordinate system. The new second-order two-scale approximate solutions for these multi-scale problems are constructed based on the multi-scale asymptotic analysis. Furthermore, the error estimates for the second-order two-scale (SOTS)solutions are obtained under some hypotheses. And then, a novel SOTS numerical algorithm based on finite element method (FEM), finite difference method (FDM)and decoupling method is brought forward in detail. Finally, some numerical examples are presented to verify the feasibility and validity of our multi-scale computational method. They also demonstrate that our multi-scale computational method can accurately capture the micro-scale dynamic thermo-mechanical responses in heterogeneous block structure, plate, cylindrical and doubly-curved shallow shells. In this paper, a unified multi-scale computational framework is established for dynamic thermo-mechanical problems of heterogeneous materials and structures with orthogonal periodic configurations. The asymptotic homogenization theory in Cartesian coordinate system and cylindrical coordinate system can be directly obtained based on the results in this paper.

Original languageEnglish
Pages (from-to)143-180
Number of pages38
JournalComputer Methods in Applied Mechanics and Engineering
Volume354
DOIs
StatePublished - 1 Sep 2019

Keywords

  • Dynamic thermo-mechanical performance
  • Heterogeneous shell structures
  • Multi-scale asymptotic analysis
  • Orthogonal periodic configurations
  • SOTS numerical algorithm

Fingerprint

Dive into the research topics of 'Multi-scale computational method for dynamic thermo-mechanical performance of heterogeneous shell structures with orthogonal periodic configurations'. Together they form a unique fingerprint.

Cite this