Abstract
Unlike traditional LASSO enforcing sparsity on the variables, Generalized LASSO (GL) enforces sparsity on a linear transformation of the variables, gaining flexibility and success in many applications. However, many existing GL algorithms do not scale up to high-dimensional problems, and/or only work well for a specific choice of the transformation. We propose an efficient Matching Pursuit Generalized LASSO (MPGL) method, which overcomes these issues, and is guaranteed to converge to a global optimum. We formulate the GL problem as a convex quadratic constrained linear programming (QCLP) problem and tailor-make a cutting plane method. More specifically, our MPGL iteratively activates a subset of nonzero elements of the transformed variables, and solves a subproblem involving only the activated elements thus gaining significant speed-up. Moreover, MPGL is less sensitive to the choice of the trade-off hyper-parameter between data fitting and regularization, and mitigates the longstanding hyper-parameter tuning issue in many existing methods. Experiments demonstrate the superior efficiency and accuracy of the proposed method over the state-of-the-arts in both classification and image processing tasks.
Original language | English |
---|---|
Pages | 1934-1940 |
Number of pages | 7 |
State | Published - 2017 |
Event | 31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, United States Duration: 4 Feb 2017 → 10 Feb 2017 |
Conference
Conference | 31st AAAI Conference on Artificial Intelligence, AAAI 2017 |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 4/02/17 → 10/02/17 |