TY - JOUR
T1 - Microstructures, strength and toughness of 2D Cf/(C-SiC) composites by chemical vapor infiltration
AU - Meng, Zhi Xin
AU - Cheng, Lai Fei
AU - Zhang, Li Tong
AU - Xu, Yong Dong
AU - Han, Xiu Feng
PY - 2009/9
Y1 - 2009/9
N2 - Two dimensional carbon fiber-reinforced silicon carbide-carbon binary matrix composites (2D Cf/(SiC-C)) were fabricated by means of isothermal and isobaric chemical vapor infiltration (ICVI). The matrix structures of the 2D Cf/(SiC-C) composites were characterized by the backscattered electron imaging (BSE) of scanning electron microscope (SEM). Furthermore, their room temperature mechanical properties and fracture surfaces were compared with two dimensional carbon fiber-reinforced silicon carbide matrix composite (2D Cf/SiC). The results indicate that the matrices in the 2D Cf/(SiC-C) composites are multilayered structures composed of SiC and PyC layers. The PyC matrix layers are homogeneous and continuous, which are bonding well with SiC matrix layers. The 2D Cf/(SiC-C) composite with a thicker PyC matrix layer in fiber bundles exhibits better mechanical properties. Meanwhile, its tensile strength, failure strain, fracture toughness and fracture work are 3%, 142%, 22% and 58% higher than those of the 2D Cf/SiC composite, respectively. The multilayered matrices composed of SiC and PyC layers, cause the fibers in the 2D Cf/(C-SiC) composites to pull out twice in a concentrated mode. Moreover, the first pull-out fibers play a leading role in enhancing the strength and toughness.
AB - Two dimensional carbon fiber-reinforced silicon carbide-carbon binary matrix composites (2D Cf/(SiC-C)) were fabricated by means of isothermal and isobaric chemical vapor infiltration (ICVI). The matrix structures of the 2D Cf/(SiC-C) composites were characterized by the backscattered electron imaging (BSE) of scanning electron microscope (SEM). Furthermore, their room temperature mechanical properties and fracture surfaces were compared with two dimensional carbon fiber-reinforced silicon carbide matrix composite (2D Cf/SiC). The results indicate that the matrices in the 2D Cf/(SiC-C) composites are multilayered structures composed of SiC and PyC layers. The PyC matrix layers are homogeneous and continuous, which are bonding well with SiC matrix layers. The 2D Cf/(SiC-C) composite with a thicker PyC matrix layer in fiber bundles exhibits better mechanical properties. Meanwhile, its tensile strength, failure strain, fracture toughness and fracture work are 3%, 142%, 22% and 58% higher than those of the 2D Cf/SiC composite, respectively. The multilayered matrices composed of SiC and PyC layers, cause the fibers in the 2D Cf/(C-SiC) composites to pull out twice in a concentrated mode. Moreover, the first pull-out fibers play a leading role in enhancing the strength and toughness.
KW - Binary matrix composites
KW - Chemical vapor infiltration
KW - Microstructure
KW - Strength and toughness
UR - http://www.scopus.com/inward/record.url?scp=70350586995&partnerID=8YFLogxK
U2 - 10.3724/SP.J.1077.2009.00939
DO - 10.3724/SP.J.1077.2009.00939
M3 - 文章
AN - SCOPUS:70350586995
SN - 1000-324X
VL - 24
SP - 939
EP - 942
JO - Wuji Cailiao Xuebao/Journal of Inorganic Materials
JF - Wuji Cailiao Xuebao/Journal of Inorganic Materials
IS - 5
ER -