Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C–ZrC–SiC composites fabricated by a multistep method of chemical liquid-vapor deposition

Qinchuan He, Hejun Li, Xuemin Yin, Changcong Wang, Jinhua Lu

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

C/C–ZrC–SiC composites reinforced by SiC nanowire (SiCnw)/pyrocarbon (PyC) core-shell networks were prepared by a multistep method of chemical liquid-vapor deposition (CLVD). The microstructure, mechanical property and ablation resistance were researched. The investigations presented that the PyC was deposited on the SiC nanowires, and the micro-scale core-shell structures were produced. Moreover, these micro-scale structures not only connected with the fibers and matrices, but also filled the pores in the composites. In contrast with C/C–ZrC–SiC composites, the flexural modulus and strength of SiCnw/PyC-C/C–ZrC–SiC composites increased by 36.91% and 44.53%, and the fracture mode was changed from the brittle to pseudo-plastic fracture. After the oxyacetylene torch ablation at two temperatures for 90s, the composites strengthened by SiCnw/PyC core-shell possessed a better resistant ablation. At ablation temperature of 2300 °C, the mass loss rate and linear reduction rate of the composites with core-shell networks decreased by 66.18% and 57.55% in contrast with the non-reinforced composites, and declined by 56.46% and 57.48% at ablation temperature of 3000 °C. The obvious decrease of ablation rates was ascribed to the dense microstructure, the small coefficient of thermal expansion (CTE), the good thermal conductivity, and the resistant ablation roles of SiCnw/PyC core-shell systems.

Original languageEnglish
Pages (from-to)20414-20426
Number of pages13
JournalCeramics International
Volume45
Issue number16
DOIs
StatePublished - Nov 2019

Keywords

  • C/C–ZrC–SiC composites
  • Chemical liquid vapor deposition
  • Microstructure
  • Property
  • SiCnw/PyC core-shell networks

Fingerprint

Dive into the research topics of 'Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C–ZrC–SiC composites fabricated by a multistep method of chemical liquid-vapor deposition'. Together they form a unique fingerprint.

Cite this