TY - JOUR
T1 - Microstructure evolution and preferred growth direction of laves phase Cr2Nb-20Ti alloy during directional solidification
AU - Xue, Yunlong
AU - Li, Shuangming
AU - Li, Kewei
AU - Zhang, Ting
AU - Fu, Hengzhi
N1 - Publisher Copyright:
Copyright © 2015, Northwest Institute for Nonferrous Metal Research. Published by Elsevier BV. All rights reserved.
PY - 2015/2/1
Y1 - 2015/2/1
N2 - The Cr2Nb-20Ti (atomic fraction) prepared by directional solidification with the withdrawal rates of 5, 10, 20, 100 μm/s were investigated to understand the microstructure evolution of the Laves phase Cr2Nb/Ti alloy. OM, XRD, and SEM apparatus were employed to determine the solidified phases and microstructure. The results indicate that the microstructures of directionally solidified Cr2Nb-20Ti alloy are all consisted of C15-Cr2Nb dendrite and interdendritic β-Ti. The formation of metastable β-Ti instead of stable α-Ti is induced by the stabilization of Cr element. With the increase in withdrawal rate and perturbation at the liquid/solid interface, the C15-Cr2Nb dendrites are refined and the dendritic morphology evolves from the petal-like pattern at 5 μm/s to the polygon-like pattern at 100 μm/s; simultaneously, the growth direction of the C15-Cr2Nb dendrite gradually deviates from the heat flow direction and transits to the preferred growth direction. From the XRD experimental result, it shows that the C15-Cr2Nb dendrite exhibits the (220) preferred growth plane due to the fact that the plane (220) has the maximal bare bond energy, leading to the fast growth kinetic and elimination of other growth planes.
AB - The Cr2Nb-20Ti (atomic fraction) prepared by directional solidification with the withdrawal rates of 5, 10, 20, 100 μm/s were investigated to understand the microstructure evolution of the Laves phase Cr2Nb/Ti alloy. OM, XRD, and SEM apparatus were employed to determine the solidified phases and microstructure. The results indicate that the microstructures of directionally solidified Cr2Nb-20Ti alloy are all consisted of C15-Cr2Nb dendrite and interdendritic β-Ti. The formation of metastable β-Ti instead of stable α-Ti is induced by the stabilization of Cr element. With the increase in withdrawal rate and perturbation at the liquid/solid interface, the C15-Cr2Nb dendrites are refined and the dendritic morphology evolves from the petal-like pattern at 5 μm/s to the polygon-like pattern at 100 μm/s; simultaneously, the growth direction of the C15-Cr2Nb dendrite gradually deviates from the heat flow direction and transits to the preferred growth direction. From the XRD experimental result, it shows that the C15-Cr2Nb dendrite exhibits the (220) preferred growth plane due to the fact that the plane (220) has the maximal bare bond energy, leading to the fast growth kinetic and elimination of other growth planes.
KW - CrNb dendrite
KW - Directional solidification
KW - Microstructure evolution
KW - Ternary alloy
KW - The preferred growth direction
UR - http://www.scopus.com/inward/record.url?scp=84925305768&partnerID=8YFLogxK
M3 - 文章
AN - SCOPUS:84925305768
SN - 1002-185X
VL - 44
SP - 375
EP - 380
JO - Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering
JF - Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering
IS - 2
ER -