Microstructure and compressive behaviour of 3D needled C/SiC composites

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

The 3D needled C/SiC composites were fabricated by chemical vapor infiltration combined with liquid melt infiltration. The microstructure and compressive behavior of 3D needled C/SiC composites were investigated. The results indicated that the 3D needled C/SiC composites were composed of the layers of 0 ° non-woven fiber cloth, short fiber web, 90 ° non-woven fiber cloth, and needle fibers. The materials were composed of carbon fiber, PyC, Si, and SiC. SiC and Si were mostly distributed in the short fiber web layers. Local C/C units (local carbon fiber reinforced PyC) were formed in the fiber bundles of non-woven fiber cloth. A great deal of pores and cracks existed in the 3D needled C/SiC composites. The pores less than 10 μm were generally located in the non-woven cloth layers, while the big pores were in the short fiber web layers. The cracks were regularly presented in the Si and SiC region of the composites and were normal to the axial direction of the fiber bundles. The compressive strengths perpendicular and parallel to the non-woven fiber cloth were about 118±18 MPa and 260±41 MPa, respectively. The compressive fractography revealed stepwise fracture along fiber layers direction.

Original languageEnglish
Title of host publicationAdvanced Engineering Materials
Pages1599-1606
Number of pages8
DOIs
StatePublished - 2011
Event2nd International Conference on Manufacturing Science and Engineering, ICMSE 2011 - Guilin, China
Duration: 9 Apr 201111 Apr 2011

Publication series

NameAdvanced Materials Research
Volume194-196
ISSN (Print)1022-6680

Conference

Conference2nd International Conference on Manufacturing Science and Engineering, ICMSE 2011
Country/TerritoryChina
CityGuilin
Period9/04/1111/04/11

Keywords

  • C/SiC
  • Compressive property
  • Microstructure

Fingerprint

Dive into the research topics of 'Microstructure and compressive behaviour of 3D needled C/SiC composites'. Together they form a unique fingerprint.

Cite this