Lower-temperature sintered high energy density fine-grained sodium bismuth titanate - strontium bismuth titanate ceramics multilayer capacitors

Jingbo Wang, Huiqing Fan, Yuxin Jia, Weijia Wang

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The breakdown field strongly determines the energy density of energy-storage ceramic capacitors. In this work, a compound sintering aid of CuO and SiO2 was preferably selected to explore the effect on sintering behavior and energy storage of sodium bismuth titanate - strontium bismuth titanate (NBT-SBT) relaxor ferroelectrics. The optimum sintering temperature promotes a dense microstructure and fined-grain size in NBT-SBT, which contributes to an increase in breakdown strength. Meanwhile, the appropriate CuO/SiO2 ratio retains the advantages of the high polarization value of NBT-SBT. Specifically, when sintered at 1040 °C with 0.2 wt% SiO2 and 0.8 wt% CuO composite sintering aids, the NBT-SBT bulk ceramics achieved an energy storage density of 4.09 J/cm3 under a high electric field of 270 kV/cm. Owing to the lower sintering temperature, the NBT-SBT achieved co-firing with 30/70 Ag/Pd electrodes. Finally, multilayer ceramic capacitors with a recoverable energy density of 8.43 J/cm3 have been successfully fabricated.

Original languageEnglish
Pages (from-to)857-864
Number of pages8
JournalCeramics International
Volume50
Issue number1
DOIs
StatePublished - 1 Jan 2024

Keywords

  • Breakdown strength
  • Ceramic capacitors
  • Energy-storage
  • Sintering
  • Sodium bismuth titanate
  • Strontium bismuth titanate

Fingerprint

Dive into the research topics of 'Lower-temperature sintered high energy density fine-grained sodium bismuth titanate - strontium bismuth titanate ceramics multilayer capacitors'. Together they form a unique fingerprint.

Cite this