Locality and structure regularized low rank representation for hyperspectral image classification

Qi Wang, Xiang He, Xuelong Li

Research output: Contribution to journalArticlepeer-review

187 Scopus citations

Abstract

Hyperspectral image (HSI) classification, which aims to assign an accurate label for hyperspectral pixels, has drawn great interest in recent years. Although low-rank representation (LRR) has been used to classify HSI, its ability to segment each class from the whole HSI data has not been exploited fully yet. LRR has a good capacity to capture the underlying low-dimensional subspaces embedded in original data. However, there are still two drawbacks for LRR. First, the LRR does not consider the local geometric structure within data, which makes the local correlation among neighboring data easily ignored. Second, the representation obtained by solving LRR is not discriminative enough to separate different data. In this paper, a novel locality- A nd structure-regularized LRR (LSLRR) model is proposed for HSI classification. To overcome the above-mentioned limitations, we present locality constraint criterion and structure preserving strategy to improve the classical LRR. Specifically, we introduce a new distance metric, which combines both spatial and spectral features, to explore the local similarity of pixels. Thus, the global and local structures of HSI data can be exploited sufficiently. In addition, we propose a structural constraint to make the representation have a near-block-diagonal structure. This helps to determine the final classification labels directly. Extensive experiments have been conducted on three popular HSI data sets. And the experimental results demonstrate that the proposed LSLRR outperforms other state-of-the-art methods.

Original languageEnglish
Article number8447427
Pages (from-to)911-923
Number of pages13
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume57
Issue number2
DOIs
StatePublished - Feb 2019

Keywords

  • Block-diagonal structure
  • hyperspectral image (HSI) classification
  • low-rank representation (LRR)

Fingerprint

Dive into the research topics of 'Locality and structure regularized low rank representation for hyperspectral image classification'. Together they form a unique fingerprint.

Cite this