TY - GEN
T1 - Learning Segment Similarity and Alignment in Large-Scale Content Based Video Retrieval
AU - Jiang, Chen
AU - Huang, Kaiming
AU - He, Sifeng
AU - Yang, Xudong
AU - Zhang, Wei
AU - Zhang, Xiaobo
AU - Cheng, Yuan
AU - Yang, Lei
AU - Wang, Qing
AU - Xu, Furong
AU - Pan, Tan
AU - Chu, Wei
N1 - Publisher Copyright:
© 2021 ACM.
PY - 2021/10/17
Y1 - 2021/10/17
N2 - With the explosive growth of web videos in recent years, large-scale Content-Based Video Retrieval (CBVR) becomes increasingly essential in video filtering, recommendation, and copyright protection. Segment-level CBVR (S-CBVR) locates the start and end time of similar segments in finer granularity, which is beneficial for user browsing efficiency and infringement detection especially in long video scenarios. The challenge of S-CBVR task is how to achieve high temporal alignment accuracy with efficient computation and low storage consumption. In this paper, we propose a Segment Similarity and Alignment Network (SSAN) in dealing with the challenge which is firstly trained end-to-end in S-CBVR. SSAN is based on two newly proposed modules in video retrieval: (1) An efficient Self-supervised Keyframe Extraction (SKE) module to reduce redundant frame features, (2) A robust Similarity Pattern Detection (SPD) module for temporal alignment. In comparison with uniform frame extraction, SKE not only saves feature storage and search time, but also introduces comparable accuracy and limited extra computation time. In terms of temporal alignment, SPD localizes similar segments with higher accuracy and efficiency than existing deep learning methods. Furthermore, we jointly train SSAN with SKE and SPD and achieve an end-to-end improvement. Meanwhile, the two key modules SKE and SPD can also be effectively inserted into other video retrieval pipelines and gain considerable performance improvements. Experimental results on public datasets show that SSAN can obtain higher alignment accuracy while saving storage and online query computational cost compared to existing methods.
AB - With the explosive growth of web videos in recent years, large-scale Content-Based Video Retrieval (CBVR) becomes increasingly essential in video filtering, recommendation, and copyright protection. Segment-level CBVR (S-CBVR) locates the start and end time of similar segments in finer granularity, which is beneficial for user browsing efficiency and infringement detection especially in long video scenarios. The challenge of S-CBVR task is how to achieve high temporal alignment accuracy with efficient computation and low storage consumption. In this paper, we propose a Segment Similarity and Alignment Network (SSAN) in dealing with the challenge which is firstly trained end-to-end in S-CBVR. SSAN is based on two newly proposed modules in video retrieval: (1) An efficient Self-supervised Keyframe Extraction (SKE) module to reduce redundant frame features, (2) A robust Similarity Pattern Detection (SPD) module for temporal alignment. In comparison with uniform frame extraction, SKE not only saves feature storage and search time, but also introduces comparable accuracy and limited extra computation time. In terms of temporal alignment, SPD localizes similar segments with higher accuracy and efficiency than existing deep learning methods. Furthermore, we jointly train SSAN with SKE and SPD and achieve an end-to-end improvement. Meanwhile, the two key modules SKE and SPD can also be effectively inserted into other video retrieval pipelines and gain considerable performance improvements. Experimental results on public datasets show that SSAN can obtain higher alignment accuracy while saving storage and online query computational cost compared to existing methods.
KW - keyframe extraction
KW - large-scale segment-level content based video retrieval
KW - similarity pattern detection
KW - temporal alignment
UR - http://www.scopus.com/inward/record.url?scp=85119381546&partnerID=8YFLogxK
U2 - 10.1145/3474085.3475301
DO - 10.1145/3474085.3475301
M3 - 会议稿件
AN - SCOPUS:85119381546
T3 - MM 2021 - Proceedings of the 29th ACM International Conference on Multimedia
SP - 1618
EP - 1626
BT - MM 2021 - Proceedings of the 29th ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 29th ACM International Conference on Multimedia, MM 2021
Y2 - 20 October 2021 through 24 October 2021
ER -