Joint multi-view 2D convolutional neural networks for 3D object classification

Jinglin Xu, Xiangsen Zhang, Wenbin Li, Xinwang Liu, Junwei Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

Three-dimensional (3D) object classification is widely involved in various computer vision applications, e.g., autonomous driving, simultaneous localization and mapping, which has attracted lots of attention in the committee. However, solving 3D object classification by directly employing the 3D convolutional neural networks (CNNs) generally suffers from high computational cost. Besides, existing view-based methods cannot better explore the content relationships between views. To this end, this work proposes a novel multi-view framework by jointly using multiple 2D-CNNs to capture discriminative information with relationships as well as a new multi-view loss fusion strategy, in an end-to-end manner. Specifically, we utilize multiple 2D views of a 3D object as input and integrate the intra-view and inter-view information of each view through the view-specific 2D-CNN and a series of modules (outer product, view pair pooling, 1D convolution, and fully connected transformation). Furthermore, we design a novel view ensemble mechanism that selects several discriminative and informative views to jointly infer the category of a 3D object. Extensive experiments demonstrate that the proposed method is able to outperform current state-of-the-art methods on 3D object classification. More importantly, this work provides a new way to improve 3D object classification from the perspective of fully utilizing well-established 2D-CNNs.

Original languageEnglish
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3202-3208
Number of pages7
ISBN (Electronic)9780999241165
StatePublished - 2020
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: 1 Jan 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January
ISSN (Print)1045-0823

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Country/TerritoryJapan
CityYokohama
Period1/01/21 → …

Fingerprint

Dive into the research topics of 'Joint multi-view 2D convolutional neural networks for 3D object classification'. Together they form a unique fingerprint.

Cite this