Investigating LSTM for punctuation prediction

Kaituo Xu, Lei Xie, Kaisheng Yao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

24 Scopus citations

Abstract

We present a neural network based punctuation prediction method using Long Short-Term Memory (LSTM) network. The proposed method uses bidirectional LSTM to encode both the past and future observation as its inputs. It models the dependency between input features and output labels through multiple layers. We also empirically study the impacts of modeling the dependency between output labels. Our results show that using a deep bi-directional LSTM is able to achieve state-of-the-art performance in punctuation prediction.

Original languageEnglish
Title of host publicationProceedings of 2016 10th International Symposium on Chinese Spoken Language Processing, ISCSLP 2016
EditorsHsin-Min Wang, Qingzhi Hou, Yuan Wei, Tan Lee, Jianguo Wei, Lei Xie, Hui Feng, Jianwu Dang, Jianwu Dang
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509042937
DOIs
StatePublished - 2 May 2017
Event10th International Symposium on Chinese Spoken Language Processing, ISCSLP 2016 - Tianjin, China
Duration: 17 Oct 201620 Oct 2016

Publication series

NameProceedings of 2016 10th International Symposium on Chinese Spoken Language Processing, ISCSLP 2016

Conference

Conference10th International Symposium on Chinese Spoken Language Processing, ISCSLP 2016
Country/TerritoryChina
CityTianjin
Period17/10/1620/10/16

Keywords

  • Conditional random field
  • Long short term memory
  • Punctuation prediction
  • Recurrent neural network

Fingerprint

Dive into the research topics of 'Investigating LSTM for punctuation prediction'. Together they form a unique fingerprint.

Cite this