Abstract
Three-dimensional ceramic nanofiber-assembled materials with large specific surface area and excellent thermal insulation properties are attracting increasing interests for their unique structure and promising applications. In this paper, we propose a facile methodology to fabricate three-dimensional silicon nitride nanofiber-knitted ceramic foams via in situ reactive synthesis from silicon foams. Silicon particle-stabilized foams are fabricated for the first time using long-chain surfactant cetyltrimethyl ammonium bromide as a hydrophobic modifier. First, the fabrication and stability of silicon foams are investigated. Based on the stable silicon foams, silicon nitride-based nanofiber-knitted ceramic foams are synthesized via in situ reactive sintering in nitrogen atmosphere. The novel ceramic foam materials consist of three-dimensional nanofiber-assembled strut wall and nanofiber-spheres in the pores. The diameter of obtained silicon nitride nanofibers ranges from 15 to 100 nm. The unique nanofiber-knitted foams may have potential applications in specific fields, including catalysis, adsorption, separation, and thermal insulation.
Original language | English |
---|---|
Pages (from-to) | 2245-2250 |
Number of pages | 6 |
Journal | Journal of the American Ceramic Society |
Volume | 102 |
Issue number | 5 |
DOIs | |
State | Published - May 2019 |
Keywords
- nanofiber-knitted foams
- particle-stabilized foams
- reactive sintering
- silicon