Improve PID controller through reinforcement learning

Yunxiao Qin, Weiguo Zhang, Jingping Shi, Jinglong Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

23 Scopus citations

Abstract

Deep Reinforcement Learning (DRL) algorithm provides an effective and powerful way for the computer learning to make decisions according to what the computer sees, the most famous application of DRL is training the computer to play computer games, such as the computer Go and Atari Games. In this paper, we present that the DRL can used to improve the classical PID controller by training an adaptive PID controller with its parameters change according to the changing state, we name our new controller as DRPID, the deep reinforcement learning algorithm that we used to train the PID controller in this paper is deep deterministic policy gradient, which is very suitable to solve continue action control problem. We test our DRPID algorithm by training it to control an inverted pendulum in the OpenAI gym simulation environment, and we found DRPID controller works very well, outperforms the common PID controller with fixed parameters, by a great margin.

Original languageEnglish
Title of host publication2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538611715
DOIs
StatePublished - Aug 2018
Event2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018 - Xiamen, China
Duration: 10 Aug 201812 Aug 2018

Publication series

Name2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018

Conference

Conference2018 IEEE CSAA Guidance, Navigation and Control Conference, CGNCC 2018
Country/TerritoryChina
CityXiamen
Period10/08/1812/08/18

Fingerprint

Dive into the research topics of 'Improve PID controller through reinforcement learning'. Together they form a unique fingerprint.

Cite this