Human-Centered Trajectory Tracking Control for Autonomous Vehicles with Driver Cut-In Behavior Prediction

Yimin Chen, Chuan Hu, Junmin Wang

Research output: Contribution to journalArticlepeer-review

97 Scopus citations

Abstract

Trajectory tracking control in the cut-in scenarios is challenging, since the autonomous vehicles have to follow the reference trajectory and cooperate with the cut-in vehicles. This paper proposes a human-centered trajectory tracking control strategy integrating driver behavior prediction for the cut-in scenarios and their transient processes. A recurrent neural network (RNN) with long short-term memory (LSTM) cells is used to predict the driver behaviors of the cut-in vehicle. Then, a model predictive control (MPC) approach considering the driver behaviors of the cut-in vehicle is designed to track the reference trajectory. The transient processes of the cut-in scenarios are considered for different cut-in behaviors. Moreover, the moving horizon estimator (MHE) is used to estimate the vehicle lateral velocity that is used in the controller. Human driver tests on a driving simulator show that the drivers' intention of the cut-in vehicle can be predicted by the RNN with LSTM cells. CarSim® simulation studies show the human-centered trajectory tracking controller can track the reference trajectory using the estimated vehicle lateral velocity. The autonomous vehicle can cooperate with the cut-in vehicle in different driving situations and obtain smooth transient processes of the cut-in scenarios.

Original languageEnglish
Article number8758867
Pages (from-to)8461-8471
Number of pages11
JournalIEEE Transactions on Vehicular Technology
Volume68
Issue number9
DOIs
StatePublished - Sep 2019
Externally publishedYes

Keywords

  • Driver behavior prediction
  • moving horizon estimator
  • recurrent neural network
  • trajectory tracking control

Fingerprint

Dive into the research topics of 'Human-Centered Trajectory Tracking Control for Autonomous Vehicles with Driver Cut-In Behavior Prediction'. Together they form a unique fingerprint.

Cite this