TY - JOUR
T1 - Hierarchical Shared Architecture Search for Real-Time Semantic Segmentation of Remote Sensing Images
AU - Wang, Wenna
AU - Ran, Lingyan
AU - Yin, Hanlin
AU - Sun, Mingjun
AU - Zhang, Xiuwei
AU - Zhang, Yanning
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2024
Y1 - 2024
N2 - Real-time semantic segmentation of remote-sensing images demands a trade-off between speed and accuracy, which makes it challenging. Apart from manually designed networks, researchers seek to adopt neural architecture search (NAS) to discover a real-time semantic segmentation model with optimal performance automatically. Most existing NAS methods stack up no more than two types of searched cells, omitting the characteristics of resolution variation. This article proposes the hierarchical shared architecture search (HAS) method to automatically build a real-time semantic segmentation model for remote sensing images. Our model contains a lightweight backbone and a multiscale feature fusion module. The lightweight backbone is carefully designed with low computational cost. The multiscale feature fusion module is searched using the NAS method, where only the blocks from the same layer share identical cells. Extensive experiments reveal that our searched real-time semantic segmentation model of remote sensing images achieves the state-of-the-art trade-off between accuracy and speed. Specifically, on the LoveDA, Potsdam, and Vaihingen datasets, the searched network achieves 54.5% mIoU, 87.8% mIoU, and 84.1% mIoU, respectively, with an inference speed of 132.7 FPS. Besides, our searched network achieves 72.6% mIoU at 164.0 FPS on the CityScapes dataset and 72.3% mIoU at 186.4 FPS on the CamVid dataset.
AB - Real-time semantic segmentation of remote-sensing images demands a trade-off between speed and accuracy, which makes it challenging. Apart from manually designed networks, researchers seek to adopt neural architecture search (NAS) to discover a real-time semantic segmentation model with optimal performance automatically. Most existing NAS methods stack up no more than two types of searched cells, omitting the characteristics of resolution variation. This article proposes the hierarchical shared architecture search (HAS) method to automatically build a real-time semantic segmentation model for remote sensing images. Our model contains a lightweight backbone and a multiscale feature fusion module. The lightweight backbone is carefully designed with low computational cost. The multiscale feature fusion module is searched using the NAS method, where only the blocks from the same layer share identical cells. Extensive experiments reveal that our searched real-time semantic segmentation model of remote sensing images achieves the state-of-the-art trade-off between accuracy and speed. Specifically, on the LoveDA, Potsdam, and Vaihingen datasets, the searched network achieves 54.5% mIoU, 87.8% mIoU, and 84.1% mIoU, respectively, with an inference speed of 132.7 FPS. Besides, our searched network achieves 72.6% mIoU at 164.0 FPS on the CityScapes dataset and 72.3% mIoU at 186.4 FPS on the CamVid dataset.
KW - Feature aggregation module
KW - hierarchical shared search strategy
KW - neural architecture search (NAS)
KW - real-time semantic segmentation
UR - http://www.scopus.com/inward/record.url?scp=85187340610&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2024.3373493
DO - 10.1109/TGRS.2024.3373493
M3 - 文章
AN - SCOPUS:85187340610
SN - 0196-2892
VL - 62
SP - 1
EP - 13
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
ER -