Heat transfer investigation of the channels with rib turbulators and double-row bleed holes

Tao Guo, Huiren Zhu, Dunchun Xu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

The detailed heat transfer distributions are measured for the wall of a channel with rib turbulators and double-row bleed holes by transient liquid crystal technique. The effects of the relative positions of rib turbulators and bleed holes, rib angles, channel Reynolds numbers and bleed ratios on heat transfer character are studied. The bleed holes are located near the upstream ribs, equidistant between ribs and near the downstream ribs. Three different rib angles of 60°, 90° and 120° are selected with the holes equidistant between ribs. The channel Reynolds numbers are changed from 30000 to 120000. The bleed ratios are between 0.09 and 0.22. The results show that angled ribs produces higher heat transfer enhancement in conjunction with the effect of bleed holes. The heat transfer characters are best when the bleed holes are located near the upstream ribs in the channels with 90° ribs. The change of bleed holes locations does not change the position of the flow reattachment, but affect the heat transfer distribution and intensity in the region. The average heat transfer enhancement decreases with the increasing of Reynolds number, and slight increases as the bleed ratio increases.

Original languageEnglish
Title of host publicationASME 2011 Turbo Expo
Subtitle of host publicationTurbine Technical Conference and Exposition, GT2011
Pages1609-1616
Number of pages8
EditionPARTS A AND B
DOIs
StatePublished - 2011
EventASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011 - Vancouver, BC, Canada
Duration: 6 Jun 201110 Jun 2011

Publication series

NameProceedings of the ASME Turbo Expo
NumberPARTS A AND B
Volume5

Conference

ConferenceASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011
Country/TerritoryCanada
CityVancouver, BC
Period6/06/1110/06/11

Fingerprint

Dive into the research topics of 'Heat transfer investigation of the channels with rib turbulators and double-row bleed holes'. Together they form a unique fingerprint.

Cite this