Heat transfer experiment and computation of a gas turbine vane

Jian Xia Luo, Hui Ren Zhu, Zong Wei Zhang

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The surface pressure coefficient and velocity ratio coefficient were tested on a gas turbine vane, and the surface heat transfer coefficient was measured with transient liquid crystal technique. For the same structure vane cascade, the performances of four turbulence models (SST, k-ω, k-ε and RNG k-ε) were simulated the flow and heat transfer, and compared data with experimental results. The result shows that, pressure coefficient declined on the pressure side along the acr direction, however, droped quickly to the minimum on the suction side and then slowly increased, which is the adverse pressure gradient. The distribution of heat transfer coefficient is strongly influenced by the complex flow pattern around the blade in the cascade passage. For pressure coefficient and velocity ratio coefficient, the results of four turbulence models have no big difference and are all very close to experimental data. Surface heat transfer coefficient distribution of SST model has similar trend with experimental data, while the other three models cannot simulate the effect of boundary layer separation on the suction side.

Original languageEnglish
Pages (from-to)526-531
Number of pages6
JournalHangkong Dongli Xuebao/Journal of Aerospace Power
Volume29
Issue number3
DOIs
StatePublished - Mar 2014

Keywords

  • Gas turbine vane
  • Pressure coefficient
  • Surface heat transfer coefficient
  • Turbulence model
  • Velocity ratio coefficient

Fingerprint

Dive into the research topics of 'Heat transfer experiment and computation of a gas turbine vane'. Together they form a unique fingerprint.

Cite this