GETNET: A General End-To-End 2-D CNN Framework for Hyperspectral Image Change Detection

Qi Wang, Zhenghang Yuan, Qian Du, Xuelong Li

Research output: Contribution to journalArticlepeer-review

507 Scopus citations

Abstract

Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with high spectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of the hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high-dimension problem and explore abundance information, this paper presents a general end-To-end 2-D convolutional neural network (CNN) framework for hyperspectral image CD (HSI-CD). The main contributions of this paper are threefold: 1) mixed-Affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multisource information; 2) 2-D CNN is designed to learn the discriminative features effectively from the multisource data at a higher level and enhance the generalization ability of the proposed CD algorithm; and 3) the new HSI-CD data set is designed for objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate that the proposed method outperforms most of the state of the arts.

Original languageEnglish
Article number8418840
Pages (from-to)3-13
Number of pages11
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume57
Issue number1
DOIs
StatePublished - Jan 2019

Keywords

  • 2-D convolutional neural network (CNN)
  • change detection (CD)
  • deep learning
  • hyperspectral image (HSI)
  • mixed-Affinity matrix
  • spectral unmixing

Fingerprint

Dive into the research topics of 'GETNET: A General End-To-End 2-D CNN Framework for Hyperspectral Image Change Detection'. Together they form a unique fingerprint.

Cite this