Exploring Brain Function-Structure Connectome Skeleton via Self-supervised Graph-Transformer Approach

Yanqing Kang, Ruoyang Wang, Enze Shi, Jinru Wu, Sigang Yu, Shu Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Understanding the relationship between brain functional connectivity and structural connectivity is important in the field of brain imaging, and it can help us better comprehend the working mechanisms of the brain. Much effort has been made on this issue, but it is still far from satisfactory. The brain transmits information through a network architecture, which means that the regions and connections of the brain are significant. The main difficulties with this issue are currently at least two aspects. On the one hand, the importance of different brain regions in structural and functional integration has not been fully addressed; on the other hand, the connectome skeleton of the brain, plays the role in common and key connections in the brain network, has not been clearly studied. To alleviate the above problems, this paper proposes a transformer-based self-supervised graph reconstruction framework (TSGR). The framework uses the graph neural network (GNN) to fuse functional and structural information of the brain, reconstructs the brain graph through a self-supervised model and identifies the regions that are important to the reconstruction task. These regions are considered as key connectome regions which play an essential role in the communication connectivity of the brain network. Based on key brain regions, the connectome skeleton can be obtained. Experimental results demonstrate the effectiveness of the proposed method, which obtains key regions and connectome skeleton in the brain network. This provides a new angle of view to explore the relationship between brain function and structure. Our code is available at https://github.com/kang105/TSGR.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
EditorsHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
PublisherSpringer Science and Business Media Deutschland GmbH
Pages308-317
Number of pages10
ISBN (Print)9783031439926
DOIs
StatePublished - 2023
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14227 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Country/TerritoryCanada
CityVancouver
Period8/10/2312/10/23

Keywords

  • Brain Function
  • Brain Structure
  • Graph Neural Network
  • Self-supervised
  • Transformer

Fingerprint

Dive into the research topics of 'Exploring Brain Function-Structure Connectome Skeleton via Self-supervised Graph-Transformer Approach'. Together they form a unique fingerprint.

Cite this