Equivariant Multi-Modality Image Fusion

Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Kai Zhang, Shuang Xu, Dongdong Chen, Radu Timofte, Luc Van Gool

Research output: Contribution to journalConference articlepeer-review

48 Scopus citations

Abstract

Multi-modality image fusion is a technique that combines information from different sensors or modalities, en-abling the fused image to retain complementary features from each modality, such as functional highlights and texture details. However, effective training of such fusion models is challenging due to the scarcity of ground truth fusion data. To tackle this issue, we propose the Equivariant Multi-Modality imAge fusion (EMMA) paradigm for end-to-end self-supervised learning. Our approach is rooted in the prior knowledge that natural imaging responses are equivariant to certain transformations. Consequently, we introduce a novel training paradigm that encompasses a fusion module, a pseudo-sensing module, and an equivariant fusion module. These components enable the net training to follow the principles of the natural sensing-imaging process while satisfying the equivariant imaging prior. Extensive experiments confirm that EMMA yields high-quality fusion results for infraredvisible and medical images, concurrently facilitating downstream multi-modal segmentation and detection tasks.

Original languageEnglish
Pages (from-to)25912-25921
Number of pages10
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
StatePublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: 16 Jun 202422 Jun 2024

Keywords

  • image fusion
  • low-level vision

Fingerprint

Dive into the research topics of 'Equivariant Multi-Modality Image Fusion'. Together they form a unique fingerprint.

Cite this