Abstract
The high temperature microwave absorbing efficiency (HTMAE) of xLa0.9Sr0.1MnO3/(1 − x)MgAl2O4 composite ceramics was investigated by studying the crystal structure, electrical conductivity, and permittivity. The crystal structure of La0.9Sr0.1MnO3 and MgAl2O4 were maintained, but the Mn3+ and Al3+ ions were exchanged with each other through doping. The conductivity and permittivity of the composite ceramics increased with the increase of La0.9Sr0.1MnO3 content and test temperature. When x = 0.36, the electrical conductivity in La0.9Sr0.1MnO3 significantly enhanced the microwave polarization of the composite ceramics at high temperature. According to transmission/reflection modelling, the composite ceramics with x = 0.24 showed excellent HTMAE near the optimal thickness of 1.8 mm. Although the optimal thickness of the composite with x = 0.36 was reduced to 1.1 mm, the HTMAE was seriously lessened due to an impedance mismatch. xLa0.9Sr0.1MnO3/(1 − x)MgAl2O4 are promising as thin and efficient microwave absorbing materials at high temperatures and the microwave permittivity can be further enhanced by adjusting the conductivity of La0.9Sr0.1MnO3.
Original language | English |
---|---|
Pages (from-to) | 1931-1937 |
Number of pages | 7 |
Journal | Journal of the European Ceramic Society |
Volume | 40 |
Issue number | 5 |
DOIs | |
State | Published - May 2020 |
Keywords
- Composite ceramics
- DC conductivity
- High temperature
- LSM
- Microwave absorbing