Abstract
The development of treatment of wound healing cannot meet clinical requirements owing to the complex bacteria-infection and inflammatory reaction. It is necessary to develop wound dressings that are fast antibacterial property, anti-inflammation and promoting cell migration and proliferation for shortening wound healing period. In this work, we first synthesized two poly(ionic liquids) (PILs): poly(1-ethyl-3-vinylimidazolium furan-2-carboxylate) (PEIF) and poly(1-butyl-3-vinylimidazolium furan-2-carboxylate) (PBIF). The PILs were then mixed with 5 wt% montmorillonite (MMT) clay and 2-furfurylamine-modified hyaluronic acid (HAF), and chemically crosslinked with four-arm maleimide-polyethylene glycol (Mal4PEG) to form degradable semi-inter penetrate network (semi-IPN) hydrogels. In vitro assays demonstrated that the synthesized semi-IPN hydrogels exhibited high antibacterial activities against Escherichia coli and Staphylococcus aureus due to the high antibacterial activity of PILs. Furthermore, the semi-IPN hydrogel could be quickly degraded, and the PILs exhibited high anti-inflammatory activities when they were released from degraded hydrogels. The degradation solutions of hydrogels contained glycosaminoglycan, which was beneficial to cell proliferation and migration. The in vivo anti-infection results further demonstrated that the semi-IPN hydrogels could kill S. aureus and accelerate the healing of infected wounds.
Original language | English |
---|---|
Article number | 127429 |
Journal | Chemical Engineering Journal |
Volume | 413 |
DOIs | |
State | Published - 1 Jun 2021 |
Keywords
- Anti-inflammation
- Antibacterial activity
- Poly(ionic liquids)
- semi-IPN hydrogels
- Wound healing