TY - JOUR
T1 - Effect of hub clearance size and shape of a cantilevered stator on the performance of a small-scale transonic axial compressor
AU - Zhang, Botao
AU - Liu, Bo
AU - Mao, Xiaochen
AU - Wu, Xiaoxiong
AU - Wang, Hejian
N1 - Publisher Copyright:
© IMechE 2021.
PY - 2022/6
Y1 - 2022/6
N2 - To deeply understand the hub leakage flow and its influence on the aerodynamic performance and flow behaviors of a small-scale transonic axial compressor, variations of the performance and the flow field of the compressor with different hub clearance sizes and clearance shapes were numerically analyzed. The results indicate that the hub clearance size has remarkable impacts on the overall performance of the compressor. With the increase of the hub clearance, the intensity of the hub leakage flow increases, resulting in more intense flow blockage near the stator hub, which reduces the compressor efficiency. However, the flow field near the blade mid-span is modified due to the more convergent flow as the reduced effective flow area caused by the passage blockage, and the flow separation range is narrowed, thus the flow stability of the compressor is enhanced. On this basis, two kinds of non-uniform clearance cases of expanding clearance and shrinking clearance with the same circumferential leakage area as the design clearance were investigated. The occurrence position of the double leakage flow which is closely connected with the flow loss and blockage is shifted backward by the expanding clearance, the flow capacity near the stator hub is enhanced, and the unsteady fluctuation intensity of the flow field is attenuated but fluctuation frequency remains. Similarly, the modification of the stator blade root flow field may result in the reduction of stall margin. The effect of the shrinking clearance on compressor performance is opposite to that of the expanding clearance, which reduces the peak efficiency and delays the stall inception.
AB - To deeply understand the hub leakage flow and its influence on the aerodynamic performance and flow behaviors of a small-scale transonic axial compressor, variations of the performance and the flow field of the compressor with different hub clearance sizes and clearance shapes were numerically analyzed. The results indicate that the hub clearance size has remarkable impacts on the overall performance of the compressor. With the increase of the hub clearance, the intensity of the hub leakage flow increases, resulting in more intense flow blockage near the stator hub, which reduces the compressor efficiency. However, the flow field near the blade mid-span is modified due to the more convergent flow as the reduced effective flow area caused by the passage blockage, and the flow separation range is narrowed, thus the flow stability of the compressor is enhanced. On this basis, two kinds of non-uniform clearance cases of expanding clearance and shrinking clearance with the same circumferential leakage area as the design clearance were investigated. The occurrence position of the double leakage flow which is closely connected with the flow loss and blockage is shifted backward by the expanding clearance, the flow capacity near the stator hub is enhanced, and the unsteady fluctuation intensity of the flow field is attenuated but fluctuation frequency remains. Similarly, the modification of the stator blade root flow field may result in the reduction of stall margin. The effect of the shrinking clearance on compressor performance is opposite to that of the expanding clearance, which reduces the peak efficiency and delays the stall inception.
KW - hub leakage flow
KW - non-uniform clearance
KW - small-scale compressor
KW - stall margin
KW - Transonic compressor
UR - http://www.scopus.com/inward/record.url?scp=85121437207&partnerID=8YFLogxK
U2 - 10.1177/09576509211060676
DO - 10.1177/09576509211060676
M3 - 文章
AN - SCOPUS:85121437207
SN - 0957-6509
VL - 236
SP - 609
EP - 620
JO - Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
JF - Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
IS - 4
ER -