Deep embedded complementary and interactive information for multi-view classification

Jinglin Xu, Wenbin Li, Xinwang Liu, Dingwen Zhang, Ji Liu, Junwei Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

63 Scopus citations

Abstract

Multi-view classification optimally integrates various features from different views to improve classification tasks. Though most of the existing works demonstrate promising performance in various computer vision applications, we observe that they can be further improved by sufficiently utilizing complementary view-specific information, deep interactive information between different views, and the strategy of fusing various views. In this work, we propose a novel multi-view learning framework that seamlessly embeds various view-specific information and deep interactive information and introduces a novel multi-view fusion strategy to make a joint decision during the optimization for classification. Specifically, we utilize different deep neural networks to learn multiple view-specific representations, and model deep interactive information through a shared interactive network using the cross-correlations between attributes of these representations. After that, we adaptively integrate multiple neural networks by flexibly tuning the power exponent of weight, which not only avoids the trivial solution of weight but also provides a new approach to fuse outputs from different deterministic neural networks. Extensive experiments on several public datasets demonstrate the rationality and effectiveness of our method.

Original languageEnglish
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Pages6494-6501
Number of pages8
ISBN (Electronic)9781577358350
DOIs
StatePublished - 2020
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: 7 Feb 202012 Feb 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period7/02/2012/02/20

Fingerprint

Dive into the research topics of 'Deep embedded complementary and interactive information for multi-view classification'. Together they form a unique fingerprint.

Cite this