CRNet: A Detail-Preserving Network for Unified Image Restoration and Enhancement Task

Kangzhen Yang, Tao Hu, Kexin Dai, Genggeng Chen, Yu Cao, Wei Dong, Peng Wu, Yanning Zhang, Qingsen Yan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

In real-world scenarios, images captured often suffer from blurring, noise, and other forms of image degradation, and due to sensor limitations, people usually can only obtain low dynamic range images. To achieve high-quality images, researchers have attempted various image restoration and enhancement operations on photographs, including denoising, deblurring, and high dynamic range imaging. However, merely performing a single type of image enhancement still cannot yield satisfactory images. In this paper, to deal with the challenge above, we propose the Composite Refinement Network (CRNet) to address this issue using multiple exposure images. By fully integrating information-rich multiple exposure inputs, CRNet can perform unified image restoration and enhancement. To improve the quality of image details, CRNet explicitly separates and strengthens high and low-frequency information through pooling layers, using specially designed Multi-Branch Blocks for effective fusion of these frequencies. To increase the receptive field and fully integrate input features, CRNet employs the High-Frequency Enhancement Module, which includes large kernel convolutions and an inverted bottleneck ConvFFN. Our model secured third place in the first track of the Bracketing Image Restoration and Enhancement Challenge, surpassing previous SOTA models in both testing metrics and visual quality.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
PublisherIEEE Computer Society
Pages6086-6096
Number of pages11
ISBN (Electronic)9798350365474
DOIs
StatePublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, United States
Duration: 16 Jun 202422 Jun 2024

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
Country/TerritoryUnited States
CitySeattle
Period16/06/2422/06/24

Keywords

  • Low-level

Fingerprint

Dive into the research topics of 'CRNet: A Detail-Preserving Network for Unified Image Restoration and Enhancement Task'. Together they form a unique fingerprint.

Cite this