Approximate inference for dynamic Bayesian networks: Sliding window approach

Xiao Guang Gao, Jun Feng Mei, Hai Yang Chen, Da Qing Chen

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Dynamic Bayesian networks (DBNs) are probabilistic graphical models that have become a ubiquitous tool for compactly describing statistical relationships among a group of stochastic processes. A suite of elaborately designed inference algorithms makes it possible for intelligent systems to use a DBN to make inferences in uncertain conditions. Unfortunately, exact inference or even approximation in a DBN has been proved to be NP-hard and is generally computationally prohibitive. In this paper, we investigate a sliding window framework for approximate inference in DBNs to reduce the computational burden. By introducing a sliding window that moves forward as time progresses, inference at any time is restricted to a quite narrow region of the network. The main contributions to the sliding window framework include an exploration of its foundations, explication of how it operates, and the proposal of two strategies for adaptive window size selection. To make this framework available as an inference engine, the interface algorithm widely used in exact inference is then integrated with the framework for approximate inference in DBNs. After analyzing its computational complexity, further empirical work is presented to demonstrate the validity of the proposed algorithms.

Original languageEnglish
Pages (from-to)575-591
Number of pages17
JournalApplied Intelligence
Volume40
Issue number4
DOIs
StatePublished - Jun 2014

Keywords

  • Approximate inference
  • Dynamic Bayesian networks
  • Interface algorithm
  • Sliding window

Fingerprint

Dive into the research topics of 'Approximate inference for dynamic Bayesian networks: Sliding window approach'. Together they form a unique fingerprint.

Cite this