An Optimal Trim Configuration Optimization Framework for Highly Flexible Aircraft

Jiachen Wang, Zhou Zhou

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, a set of flight configuration optimization framework for high-altitude long-endurance aircraft is formed by optimizing the level flight configuration. The intrinsic beam model is used to model the formula of the whole highly flexible aircraft, coupled with unsteady aerodynamics and six-degree-of-freedom rigid body motion. The interior point method is used for optimization calculation by balancing the initial points first and optimizing the sequence of multiple initial points later. The optimal calculation results of the aircraft with wing layout studied in the literature are given and compared with the trim configuration in the literature. The results show that the proposed optimization framework can converge quickly in relatively few steps, and can significantly improve the whole plane resistance during the trim process of flexible aircraft.

Original languageEnglish
Title of host publication2023 Asia-Pacific International Symposium on Aerospace Technology, APISAT 2023, Proceedings - Volume I
EditorsSong Fu
PublisherSpringer Science and Business Media Deutschland GmbH
Pages1045-1054
Number of pages10
ISBN (Print)9789819739974
DOIs
StatePublished - 2024
EventAsia-Pacific International Symposium on Aerospace Technology, APISAT 2023 - Lingshui, China
Duration: 16 Oct 202318 Oct 2023

Publication series

NameLecture Notes in Electrical Engineering
Volume1050 LNEE
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119

Conference

ConferenceAsia-Pacific International Symposium on Aerospace Technology, APISAT 2023
Country/TerritoryChina
CityLingshui
Period16/10/2318/10/23

Keywords

  • Highly flexible aircraft
  • Interior point method
  • Optimum wing shape

Fingerprint

Dive into the research topics of 'An Optimal Trim Configuration Optimization Framework for Highly Flexible Aircraft'. Together they form a unique fingerprint.

Cite this