An Explainable Data-Driven Framework for Fuel Cell Aging Prediction under Dynamic Condition

Renyou Xie, Chaojie Li, Rui Ma, Liangcai Xu, Xiaojun Zhou

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Fuel cells are considered as the preferred future power source due to their environmental friendliness and high efficiency, whereas short lifespan and high cost hinder their large-scale commercialization. Fuel cell prognostic can contribute to prolonging the fuel cell life and reducing the overall cost, and it has attracted research attention recently. However, most of the prognostic methods treat the measured voltage as the health indicator and thus can only be applied to the fuel cell that works under constant current condition. To handle the prognostic under frequent load change condition, this article proposes an attention mechanism-based explainable data-driven framework. In the framework, system parameters are used to construct a virtual voltage as the health indicator for degradation prediction. Attention mechanism is integrated to find the essential parameters that affect fuel cell degradation, which can reduce the sensors and provide an explainable prediction result. The proposed framework is testified using aging data obtained under dynamic condition. Results show that the current, outlet air temperature and time are the most important parameters that affect the prediction. Comparisons with conventional methods indicate the proposed method can get a promising prediction.

Original languageEnglish
Pages (from-to)5960-5970
Number of pages11
JournalIEEE Transactions on Industrial Electronics
Volume70
Issue number6
DOIs
StatePublished - 1 Jun 2023

Keywords

  • Degradation prediction
  • explainable methods
  • fuel cells
  • prognostic

Fingerprint

Dive into the research topics of 'An Explainable Data-Driven Framework for Fuel Cell Aging Prediction under Dynamic Condition'. Together they form a unique fingerprint.

Cite this