TY - GEN
T1 - All-in-one Multi-degradation Image Restoration Network via Hierarchical Degradation Representation
AU - Zhang, Cheng
AU - Zhu, Yu
AU - Yan, Qingsen
AU - Sun, Jinqiu
AU - Zhang, Yanning
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/10/26
Y1 - 2023/10/26
N2 - The aim of image restoration is to recover high-quality images from distorted ones. However, current methods usually focus on a single task (e.g., denoising, deblurring or super-resolution) which cannot address the needs of real-world multi-task processing, especially on mobile devices. Thus, developing an all-in-one method that can restore images from various unknown distortions is a significant challenge. Previous works have employed contrastive learning to learn the degradation representation from observed images, but this often leads to representation drift caused by deficient positive and negative pairs. To address this issue, we propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet) that can effectively capture and utilize accurate degradation representation for image restoration. AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering, without any prior knowledge of degradation information. This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration. To further enhance the performance of the image restoration network and overcome domain gaps caused by unknown distortions, we design a feature transform block (FTB) that aligns domains and refines features with the guidance of the degradation representation. We conduct extensive experiments on multiple distorted datasets, demonstrating the effectiveness of our method and its advantages over state-of-the-art restoration methods both qualitatively and quantitatively.
AB - The aim of image restoration is to recover high-quality images from distorted ones. However, current methods usually focus on a single task (e.g., denoising, deblurring or super-resolution) which cannot address the needs of real-world multi-task processing, especially on mobile devices. Thus, developing an all-in-one method that can restore images from various unknown distortions is a significant challenge. Previous works have employed contrastive learning to learn the degradation representation from observed images, but this often leads to representation drift caused by deficient positive and negative pairs. To address this issue, we propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet) that can effectively capture and utilize accurate degradation representation for image restoration. AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering, without any prior knowledge of degradation information. This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration. To further enhance the performance of the image restoration network and overcome domain gaps caused by unknown distortions, we design a feature transform block (FTB) that aligns domains and refines features with the guidance of the degradation representation. We conduct extensive experiments on multiple distorted datasets, demonstrating the effectiveness of our method and its advantages over state-of-the-art restoration methods both qualitatively and quantitatively.
KW - degradation representation
KW - image restoration
KW - neural network
UR - http://www.scopus.com/inward/record.url?scp=85179546353&partnerID=8YFLogxK
U2 - 10.1145/3581783.3611825
DO - 10.1145/3581783.3611825
M3 - 会议稿件
AN - SCOPUS:85179546353
T3 - MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
SP - 2285
EP - 2293
BT - MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 31st ACM International Conference on Multimedia, MM 2023
Y2 - 29 October 2023 through 3 November 2023
ER -