AdaEnlight: Energy-aware Low-light Video Stream Enhancement on Mobile Devices

Sicong Liu, Xiaochen Li, Zimu Zhou, Bin Guo, Meng Zhang, Haocheng Shen, Zhiwen Yu

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The ubiquity of camera-embedded devices and the advances in deep learning have stimulated various intelligent mobile video applications. These applications often demand on-device processing of video streams to deliver real-time, high-quality services for privacy and robustness concerns. However, the performance of these applications is constrained by the raw video streams, which tend to be taken with small-aperture cameras of ubiquitous mobile platforms in dim light. Despite extensive low-light video enhancement solutions, they are unfit for deployment to mobile devices due to their complex models and and ignorance of system dynamics like energy budgets. In this paper, we propose AdaEnlight, an energy-aware low-light video stream enhancement system on mobile devices. It achieves real-time video enhancement with competitive visual quality while allowing runtime behavior adaptation to the platform-imposed dynamic energy budgets. We report extensive experiments on diverse datasets, scenarios, and platforms and demonstrate the superiority of AdaEnlight compared with state-of-the-art low-light image and video enhancement solutions.

Original languageEnglish
Article number172
JournalProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume6
Issue number4
DOIs
StatePublished - 11 Jan 2023

Keywords

  • energy awareness
  • low light video enhancement
  • mobile devices

Fingerprint

Dive into the research topics of 'AdaEnlight: Energy-aware Low-light Video Stream Enhancement on Mobile Devices'. Together they form a unique fingerprint.

Cite this