Acm: Adaptive cross-modal graph convolutional neural networks for rgb-d scene recognition

Yuan Yuan, Zhitong Xiong, Qi Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

33 Scopus citations

Abstract

RGB image classification has achieved significant performance improvement with the resurge of deep convolutional neural networks. However, mono-modal deep models for RGB image still have several limitations when applied to RGB-D scene recognition. 1) Images for scene classification usually contain more than one typical object with flexible spatial distribution, so the object-level local features should also be considered in addition to global scene representation. 2) Multi-modal features in RGB-D scene classification are still under-utilized. Simply combining these modal-specific features suffers from the semantic gaps between different modalities. 3) Most existing methods neglect the complex relationships among multiple modality features. Considering these limitations, this paper proposes an adaptive cross-modal (ACM) feature learning framework based on graph convolutional neural networks for RGB-D scene recognition. In order to make better use of the modal-specific cues, this approach mines the intra-modality relationships among the selected local features from one modality. To leverage the multi-modal knowledge more effectively, the proposed approach models the inter-modality relationships between two modalities through the cross-modal graph (CMG). We evaluate the proposed method on two public RGB-D scene classification datasets: SUN-RGBD and NYUD V2, and the proposed method achieves state-of-the-art performance.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages9176-9184
Number of pages9
ISBN (Electronic)9781577358091
DOIs
StatePublished - 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19

Fingerprint

Dive into the research topics of 'Acm: Adaptive cross-modal graph convolutional neural networks for rgb-d scene recognition'. Together they form a unique fingerprint.

Cite this