TY - GEN
T1 - A Unified HDR Imaging Method with Pixel and Patch Level
AU - Yan, Qingsen
AU - Chen, Weiye
AU - Zhang, Song
AU - Zhu, Yu
AU - Sun, Jinqiu
AU - Zhang, Yanning
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Mapping Low Dynamic Range (LDR) images with different exposures to High Dynamic Range (HDR) remains nontrivial and challenging on dynamic scenes due to ghosting caused by object motion or camera jitting. With the success of Deep Neural Networks (DNNs), several DNNs-based methods have been proposed to alleviate ghosting, they cannot generate approving results when motion and saturation occur. To generate visually pleasing HDR images in various cases, we propose a hybrid HDR deghosting network, called HyHDRNet, to learn the complicated relationship between reference and non-reference images. The proposed HyHDRNet consists of a content alignment subnetwork and a Transformer-based fusion subnetwork. Specifically, to effectively avoid ghosting from the source, the content alignment subnetwork uses patch aggregation and ghost attention to integrate similar content from other non-reference images with patch level and suppress undesired components with pixel level. To achieve mutual guidance between patch-level and pixel-level, we leverage a gating module to sufficiently swap useful information both in ghosted and saturated regions. Furthermore, to obtain a high-quality HDR image, the Transformer-based fusion subnetwork uses a Residual Deformable Transformer Block (RDTB) to adaptively merge information for different exposed regions. We examined the proposed method on four widely used public HDR image deghosting datasets. Experiments demonstrate that HyHDRNet outperforms state-of-the-art methods both quantitatively and qualitatively, achieving appealing HDR visualization with unified textures and colors.
AB - Mapping Low Dynamic Range (LDR) images with different exposures to High Dynamic Range (HDR) remains nontrivial and challenging on dynamic scenes due to ghosting caused by object motion or camera jitting. With the success of Deep Neural Networks (DNNs), several DNNs-based methods have been proposed to alleviate ghosting, they cannot generate approving results when motion and saturation occur. To generate visually pleasing HDR images in various cases, we propose a hybrid HDR deghosting network, called HyHDRNet, to learn the complicated relationship between reference and non-reference images. The proposed HyHDRNet consists of a content alignment subnetwork and a Transformer-based fusion subnetwork. Specifically, to effectively avoid ghosting from the source, the content alignment subnetwork uses patch aggregation and ghost attention to integrate similar content from other non-reference images with patch level and suppress undesired components with pixel level. To achieve mutual guidance between patch-level and pixel-level, we leverage a gating module to sufficiently swap useful information both in ghosted and saturated regions. Furthermore, to obtain a high-quality HDR image, the Transformer-based fusion subnetwork uses a Residual Deformable Transformer Block (RDTB) to adaptively merge information for different exposed regions. We examined the proposed method on four widely used public HDR image deghosting datasets. Experiments demonstrate that HyHDRNet outperforms state-of-the-art methods both quantitatively and qualitatively, achieving appealing HDR visualization with unified textures and colors.
KW - Low-level vision
UR - http://www.scopus.com/inward/record.url?scp=85173936874&partnerID=8YFLogxK
U2 - 10.1109/CVPR52729.2023.02127
DO - 10.1109/CVPR52729.2023.02127
M3 - 会议稿件
AN - SCOPUS:85173936874
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 22211
EP - 22220
BT - Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PB - IEEE Computer Society
T2 - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Y2 - 18 June 2023 through 22 June 2023
ER -